
TL;DR Quick Start

Step Description Prompt / Script

1
Install Cursor (AI code
editor)

Download and install the Cursor app for macOS, Windows, or Linux
from the official site.

2
Open your React
project in Cursor

Launch Cursor and open your existing React project folder.

3
Generate a new
component using a
prompt

You are my React assistant. Create a <Button> component using
TypeScript with props onClick and label. Use CSS Modules. Generate
the TSX file and a matching Button.module.css.

4
Detect potential errors
and improvements

Scan this React project for common issues like missing keys,
incorrect dependency arrays, unused props, and basic performance
problems. List issues with file paths and suggested fixes.

How to Set Up the Cursor for a React Project

Step 1 – Installation

Download and install the Cursor IDE for your operating system. Optionally, install the Cursor CLI/Agent if
you want to trigger prompts from the terminal.

Verify CLI installation:

Step Prompt / Script

Verify CLI cursor --version

Mini-checklist: - Install the Cursor desktop app
- (Optional) Install Cursor CLI / Agent
- Verify CLI availability

Step 2 – Open Your React Project

Open your React project folder in Cursor. The editor reads your project structure for context-aware
suggestions.

1

Mini-checklist: - Launch Cursor
- Open the React project folder
- Confirm files load correctly

Step 3 – Initial Configuration

Task Details

Component structure Functional/class-based

File naming Custom conventions

Styling CSS Modules, Styled Components, Tailwind CSS

Linting/formatting Enable auto-suggestions

Review Confirm configuration before running commands

Generate React Components with Cursor

1. Component Scaffolding

Step Prompt / Script

Scaffold new
component

Create a NavBar React component in TypeScript with props links and activeIndex.
Use CSS Modules for styling. Generate TSX file and matching CSS module. Ensure
accessibility features like keyboard navigation.

Mini-checklist: - Decide on component name and type
- Define props and default states
- Choose styling method
- Review auto-generated code

2. Hook Generation

Step Prompt / Script

Generate
custom hook

Generate a custom React hook called useFormValidation for validating email and
password. Include state management, validation logic, and error handling. Return
both values and errors.

Checklist: - Identify hook purpose
- Define input parameters and return values

2

- Generate hook using Cursor prompt
- Integrate and test

3. Template Management

Step Prompt / Script

Save reusable
template

Treat this button component as a reusable template. Apply the same structure and
styling when generating new button components.

Update template Update this template to include dark mode support.

Mini-checklist: - Identify reusable components/hooks
- Save templates with descriptive names
- Customize templates
- Use prompts for modifications

Debugging and Refactoring with Cursor

1. Error Detection

Step Prompt / Script

Detect
common
issues

Scan src/components and src/hooks for common React issues like missing keys,
incorrect dependency arrays, unused props, and prop drilling. List issues with file
paths and suggested fixes.

Suggest prop
fixes

Suggest prop type fixes for all functional components.

Workflow: - Select folders/files
- Run prompt
- Review issues and apply fixes
- Re-run prompt to confirm

2. Performance Optimization

Step Prompt / Script

Analyze
component

Review ComponentName.tsx and identify potential causes of unnecessary re-
renders. Suggest optimizations such as memoization, component splitting, or
caching.

3

Checklist: - Detect slow-rendering components
- Apply React.memo where appropriate
- Split large components
- Re-test performance

3. Code Refactoring Prompts

Step Prompt / Script

Refactor
component

Refactor this component to improve readability and reduce complexity without
changing behavior.

Refactor hook Refactor this hook to reduce unnecessary state updates and improve clarity.

Workflow: - Select target component/hook
- Prompt Cursor with goal
- Compare before/after
- Test functionality

Productivity Impact Table

Metrics Example Time Saved Errors Reduced

Component scaffolding NavBar, Button 40% 0–1 per file

Hook generation useFormValidation 35% 0

Debugging suggestions Error detection prompts 25% 2–3 per file

Workflow Tips & Best Practices

Mini-Checklist

Define templates for commonly used components
Keep Cursor prompts specific
Review auto-generated code for edge cases
Document recurring patterns

Version Control

Commit small increments
Tag reusable templates

•
•
•
•

•
•

4

Separate experimental changes in feature branches
Include prompts in commit messages

Team Collaboration Prompts

Prompt Examples

Generate accessible modal component with keyboard navigation.

Create reusable form hook with validation for email and password.

Refactor button components to follow new CSS module conventions.

Checklist: - Save team-specific prompt templates
- Share runbooks and guides
- Review and approve generated code collectively

•
•

5

	TL;DR Quick Start
	How to Set Up the Cursor for a React Project
	Step 1 – Installation
	Step 2 – Open Your React Project
	Step 3 – Initial Configuration

	Generate React Components with Cursor
	1. Component Scaffolding
	2. Hook Generation
	3. Template Management

	Debugging and Refactoring with Cursor
	1. Error Detection
	2. Performance Optimization
	3. Code Refactoring Prompts

	Productivity Impact Table
	Workflow Tips & Best Practices
	Mini-Checklist
	Version Control
	Team Collaboration Prompts

