TL;DR Quick Start

Step Description Prompt / Script
Open files/modules in Cursor IDE. Use targeted prompts to identify error-
1 Scan Your Code .
prone areas (unhandled promises, null access, deprecated APIs).
5 Generate Fix Highlight problematic code and prompt: Cursor, suggest a fix for [specific
Suggestions bug] in [file]. Review multiple options and select the best.
,) Run unit and integration tests on modified code. Include edge cases
3 Validate Fixes
Cursor may not cover.
4 Apply Fix and Implement chosen fix and use clear commit messages describing the
Commit issue and solution.

Monitor Recurring Track recurring issues in logs/issue tracker. Use Cursor to search for
Bugs similar patterns and adjust prompts/templates for future bugs.

Setting Up Cursor for Debugging

Step 1 - Installation

« Download and install Cursor for your OS.
* Open your project/repository inside Cursor IDE (File = Open Folder).
« Optional: Install Cursor CLI/Agent to trigger analysis from terminal or CI/CD.

Step 2 - Initial Configuration

Task Details

Language & Framework Specify JS, TS, Python, React, Node.js, Django, etc.
Auto-suggestions Enable live scanning and adjust frequency.

Alert Thresholds Set severity: warnings, errors, critical issues.

Step-by-Step Bug Fixing Runbook

Step 1 - Identify Bugs

* Open project in Cursor IDE.

+ Use targeted prompts to find error-prone code (unhandled promises, null access, deprecated APIs).
* Prioritize issues based on context and risk.

Step 2 - Generate Fix Suggestions

* Use Suggest Fix prompt in Cursor.
* Review multiple Al-generated solutions.
* Select the solution matching project architecture.

Example template:

try {
const response = await fetchData();
processResponse(response);
} catch (error) {
logError(error);
retryFetchData();

Step 3 - Validate Fixes

* Run unit and integration tests.
+ Check edge cases and integration workflows.

Mini-Checklist: - Run relevant unit tests - Check integration workflows - Review Cursor’s suggested test
coverage

Step 4 - Apply Fix and Commit

* Implement fix in codebase.

* Use descriptive commit messages, e.g., Fix: Handle async API rejection in
userController.js .

* Test in local/staging environment.

Step 5 - Monitor and Iterate

* Track recurring issues.
* Adjust prompts/templates for future bugs.

Mini-Checklist: - Scan & prioritize code - Review & apply fix suggestions - Run targeted tests - Commit with
clear documentation - Track recurring issues

Advanced Cursor Debugging Tips

Tip #1: Prompt Engineering
+ Craft prompts that guide Cursor to analyze code deeply.

* Include context from surrounding files or modules.
* Request multiple solutions for comparison.

Tip #2: Automating Repetitive Fixes
« Create workflow templates for recurring bugs.

* Enable conservative automation for multiple files.
+ Review diffs and run tests to ensure safety.

Cursor Debugging Performance Metrics

. Before After . .
Metric / Focus Area Insights / Actions
Cursor Cursor
Avg Bug Resolution Time 3h 1.2h Track fix time by bug type.
, Use Cursor templates for recurring
Recurring Bug Frequency 12/week 7/week
patterns.
Unit & Integration Test ,) .
) 5% 1.5% Validate fixes proactively.
Failures
Focus scanning on frequent-error
High-Risk Code Modules 6 modules 2 modules ¢ q
modules.
Allocate saved time to refactoring/
Developer Time Saved N/A 2-3h/week g

features.

Examples of Bug Fixes Using Cursor

Example 1 - Fixing API Timeout

async function fetchDataWithRetry(url, retries = 3) {
for (let 1 = 0; 1 < retries; i++) {
try {
const response = await fetch(url);
return await response.json();

} catch (error) {
if (i === retries - 1) throw error;
await new Promise(res => setTimeout(res, 500 * (i + 1)));

Example 2 - Resolving Null Reference Errors

const userEmail = user?.profile?.email ?? "unknown@example.com";

Example 3 - Optimizing CSS Rendering Bugs

/* Original conflicting rules */
.button { color: red; }
.primary-button { color: blue; }

/* Optimized */

.button { color: red; }
.primary-button { color: blue !important; }

Common Challenges & Cursor Workarounds

Issue #1: Handling Missed Edge Cases

* Run multiple prompts with additional context.
+ Add comprehensive test cases.
+ Validate fixes manually.

Issue #2: Conflicting Suggestions

« Compare options carefully.

* Test each candidate fix.

+ Choose the most compatible solution.
* Maintain a decision log.

Final Summary & Key Takeaways

* Follow the workflow step-by-step.

+ Validate fixes with testing.

* Track patterns to prevent recurring bugs.

« Use advanced features: prompts, automation, test integrations.
+ Investigate root causes for future prevention.

Cursor Bug Fixing Templates Pack

* 12 ready-to-use Cursor prompts for common issues.

* 5 step-by-step workflows.

* 4 checklists and metrics templates.

+ 7 example code snippets.

+ 3 workflow templates for multi-file or integration errors.
* Delivered in copy-paste-ready format.

	TL;DR Quick Start
	Setting Up Cursor for Debugging
	Step 1 – Installation
	Step 2 – Initial Configuration

	Step-by-Step Bug Fixing Runbook
	Step 1 – Identify Bugs
	Step 2 – Generate Fix Suggestions
	Step 3 – Validate Fixes
	Step 4 – Apply Fix and Commit
	Step 5 – Monitor and Iterate

	Advanced Cursor Debugging Tips
	Tip #1: Prompt Engineering
	Tip #2: Automating Repetitive Fixes

	Cursor Debugging Performance Metrics
	Examples of Bug Fixes Using Cursor
	Example 1 – Fixing API Timeout
	Example 2 – Resolving Null Reference Errors
	Example 3 – Optimizing CSS Rendering Bugs

	Common Challenges & Cursor Workarounds
	Issue #1: Handling Missed Edge Cases
	Issue #2: Conflicting Suggestions

	Final Summary & Key Takeaways
	Cursor Bug Fixing Templates Pack

