
TL;DR Quick Start

Step Description Prompt / Script

1 Scan Your Code
Open files/modules in Cursor IDE. Use targeted prompts to identify error-
prone areas (unhandled promises, null access, deprecated APIs).

2
Generate Fix
Suggestions

Highlight problematic code and prompt: Cursor, suggest a fix for [specific
bug] in [file]. Review multiple options and select the best.

3 Validate Fixes
Run unit and integration tests on modified code. Include edge cases
Cursor may not cover.

4
Apply Fix and
Commit

Implement chosen fix and use clear commit messages describing the
issue and solution.

5
Monitor Recurring
Bugs

Track recurring issues in logs/issue tracker. Use Cursor to search for
similar patterns and adjust prompts/templates for future bugs.

Setting Up Cursor for Debugging

Step 1 – Installation

Download and install Cursor for your OS.
Open your project/repository inside Cursor IDE (File → Open Folder).
Optional: Install Cursor CLI/Agent to trigger analysis from terminal or CI/CD.

Step 2 – Initial Configuration

Task Details

Language & Framework Specify JS, TS, Python, React, Node.js, Django, etc.

Auto-suggestions Enable live scanning and adjust frequency.

Alert Thresholds Set severity: warnings, errors, critical issues.

Step-by-Step Bug Fixing Runbook

Step 1 – Identify Bugs

Open project in Cursor IDE.

•
•
•

•

1

Use targeted prompts to find error-prone code (unhandled promises, null access, deprecated APIs).
Prioritize issues based on context and risk.

Step 2 – Generate Fix Suggestions

Use Suggest Fix prompt in Cursor.
Review multiple AI-generated solutions.
Select the solution matching project architecture.

Example template:

try {

const response = await fetchData();

processResponse(response);

} catch (error) {

logError(error);

retryFetchData();

}

Step 3 – Validate Fixes

Run unit and integration tests.
Check edge cases and integration workflows.

Mini-Checklist: - Run relevant unit tests - Check integration workflows - Review Cursor’s suggested test
coverage

Step 4 – Apply Fix and Commit

Implement fix in codebase.
Use descriptive commit messages, e.g., Fix: Handle async API rejection in
userController.js .
Test in local/staging environment.

Step 5 – Monitor and Iterate

Track recurring issues.
Adjust prompts/templates for future bugs.

Mini-Checklist: - Scan & prioritize code - Review & apply fix suggestions - Run targeted tests - Commit with
clear documentation - Track recurring issues

•
•

•
•
•

•
•

•
•

•

•
•

2

Advanced Cursor Debugging Tips

Tip #1: Prompt Engineering

Craft prompts that guide Cursor to analyze code deeply.
Include context from surrounding files or modules.
Request multiple solutions for comparison.

Tip #2: Automating Repetitive Fixes

Create workflow templates for recurring bugs.
Enable conservative automation for multiple files.
Review diffs and run tests to ensure safety.

Cursor Debugging Performance Metrics

Metric / Focus Area
Before
Cursor

After
Cursor

Insights / Actions

Avg Bug Resolution Time 3h 1.2h Track fix time by bug type.

Recurring Bug Frequency 12/week 7/week
Use Cursor templates for recurring
patterns.

Unit & Integration Test
Failures

5% 1.5% Validate fixes proactively.

High-Risk Code Modules 6 modules 2 modules
Focus scanning on frequent-error
modules.

Developer Time Saved N/A 2–3h/week
Allocate saved time to refactoring/
features.

Examples of Bug Fixes Using Cursor

Example 1 – Fixing API Timeout

async function fetchDataWithRetry(url, retries = 3) {

for (let i = 0; i < retries; i++) {

try {

const response = await fetch(url);

return await response.json();

•
•
•

•
•
•

3

} catch (error) {

if (i === retries - 1) throw error;

await new Promise(res => setTimeout(res, 500 * (i + 1)));

}

}

}

Example 2 – Resolving Null Reference Errors

const userEmail = user?.profile?.email ?? "unknown@example.com";

Example 3 – Optimizing CSS Rendering Bugs

/* Original conflicting rules */

.button { color: red; }

.primary-button { color: blue; }

/* Optimized */

.button { color: red; }

.primary-button { color: blue !important; }

Common Challenges & Cursor Workarounds

Issue #1: Handling Missed Edge Cases

Run multiple prompts with additional context.
Add comprehensive test cases.
Validate fixes manually.

Issue #2: Conflicting Suggestions

Compare options carefully.
Test each candidate fix.
Choose the most compatible solution.
Maintain a decision log.

Final Summary & Key Takeaways
Follow the workflow step-by-step.

•
•
•

•
•
•
•

•

4

Validate fixes with testing.
Track patterns to prevent recurring bugs.
Use advanced features: prompts, automation, test integrations.
Investigate root causes for future prevention.

Cursor Bug Fixing Templates Pack
12 ready-to-use Cursor prompts for common issues.
5 step-by-step workflows.
4 checklists and metrics templates.
7 example code snippets.
3 workflow templates for multi-file or integration errors.
Delivered in copy-paste-ready format.

•
•
•
•

•
•
•
•
•
•

5

	TL;DR Quick Start
	Setting Up Cursor for Debugging
	Step 1 – Installation
	Step 2 – Initial Configuration

	Step-by-Step Bug Fixing Runbook
	Step 1 – Identify Bugs
	Step 2 – Generate Fix Suggestions
	Step 3 – Validate Fixes
	Step 4 – Apply Fix and Commit
	Step 5 – Monitor and Iterate

	Advanced Cursor Debugging Tips
	Tip #1: Prompt Engineering
	Tip #2: Automating Repetitive Fixes

	Cursor Debugging Performance Metrics
	Examples of Bug Fixes Using Cursor
	Example 1 – Fixing API Timeout
	Example 2 – Resolving Null Reference Errors
	Example 3 – Optimizing CSS Rendering Bugs

	Common Challenges & Cursor Workarounds
	Issue #1: Handling Missed Edge Cases
	Issue #2: Conflicting Suggestions

	Final Summary & Key Takeaways
	Cursor Bug Fixing Templates Pack

